【题目】已知的内角、、的对边分别为、、,且.
(Ⅰ)求;
(Ⅱ)若,,如图,为线段上一点,且,求的长.
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面四边形ABCD是一个菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是线段PC上的任意一点,证明:平面PAC⊥平面QBD.
(2)当平面PBC与平面PDC所成的锐二面角的余弦值为时,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,沿其对角线BD将折起至,使得点在平面ABCD内的射影恰为点B,点E为的中点.
(Ⅰ)求证:平面BDE;
(Ⅱ)若,求与平面BDE所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,上顶点为A,右顶点为B.点在椭圆C内,且直线与直线垂直.
(1)求C的方程;
(2)设过点P的直线交C于M,N两点,求证:以为直径的圆过点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,圆经过椭圆C的左、右焦点,.
(1)求椭圆C的标准方程;
(2)若A,B,D,E是椭圆C上不同四点(其中点D在第一象限),且,直线,关于直线对称,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,若,的方向是沿方向绕着点按逆时针方向旋转角得到的,则称经过一次变换得到.已知向量经过一次变换后得到,经过一次变换后得到,…,如此下去,经过一次变换后得到,设,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解市民对电视剧市场的爱好,某上星电视台邀请了100位电视剧爱好者(男50人、女50人)对4月份观看其播出的电视剧集数进行调研,得到这100名电视剧爱好者观看集数的中位数为39集(假设这100名电视剧爱好者的观看集数均在集内),且观看集数在集内的人数为15,并根据调查结果画出如图所示的频率分布直方图.
(1)求,的值;
(2)有些观众喜欢带有主角光环意识来观剧.但是最近几年的影视作品里出现了一个有趣的趋势——攻气十足的女性角色越来越讨人喜欢,傻白甜的女主们则破了主角光环,各种被嫌弃,更有些剧集中明明是女配的脚本,却因为更具有大女主气场,而获得了比主角更多的关注与声量,如《完美关系》里的斯黛拉,《精英律师》里的栗娜,《我的前半生》里的唐晶,……已知在这100名电视剧爱好者的女性中有31名认为自己有主角光环意识,男性中有19名认为自己有主角光环意识,根据以上数据请同学们制作出列联表,并且判断能否在犯错误的概率不超过0.001的前提下认为性别与是否观剧带有主角光环意识有关系?
参考公式及数据:,其中.
() | 0.05 | 0.01 | 0.005 | 0.001 |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com