精英家教网 > 高中数学 > 题目详情
已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(Ⅰ)求该椭圆的方程;
(Ⅱ)求弦AC中点的横坐标.
分析:(1)根据椭圆定义结合已知条件,得|F1B|+|F2B|=10=2a可得a=5.由c=4算出b=3,即可得出该椭圆的方程;
(2)由点B(4,yB)在椭圆上,利用椭圆方程算出yB=
9
5
.再根据圆锥曲线统一定义,算出|F2A|、|F2C|关于它们的横坐标x1、x2的式子,由|F2A|、|F2B|、|F2C|成等差数列建立关系式算出x1+x2=8,最后利用中点坐标公式,即可算出弦AC中点的横坐标.
解答:解:(1)由椭圆定义及条件,可得
2a=|F1B|+|F2B|=10,得a=5.
又∵c=4,∴b=
a2-b2
=3.
因此可得该椭圆方程为
x2
25
+
y2
9
=1

(2)∵点B(4,yB)在椭圆上,
∴将x=4,代入椭圆方程求得yB=
9
5
,可得|F2B|=|yB|=
9
5

∵椭圆右准线方程为x=
a2
c
,即x=
25
4
,离心率e=
c
a
=
4
5

根据圆锥曲线统一定义,得
|F2A|=
4
5
25
4
-x1),|F2C|=
4
5
25
4
-x2).
由|F2A|、|F2B|、|F2C|成等差数列,得2|F2B|=|F2A|+|F2C|
4
5
25
4
-x1)+
4
5
25
4
-x2)=2×
9
5
,由此解得x1+x2=8.
设弦AC的中点为P(x0,y0),
可得中点横坐标为则x0=
1
2
(x1+x2)=4.
点评:本题给出椭圆满足的条件,求椭圆的方程并依此求AC的中点横坐标,着重考查了椭圆的定义与标准方程、圆锥曲线的统一定义和等差数列的性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

()(本小题满分12分)已知椭圆C: 的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1是,坐标原点O到直线l的距离为.

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的方程为(a>0),其右焦点为F,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆上半部于点P1、P2、P3、P4、P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求椭圆的方程;

(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

(文)某厂家拟在2006年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2006年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

(1)将2006年该产品的利润y万元表示为年促销费用m万元的函数;

(2)该厂家2006年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

同步练习册答案