精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若直线是曲线的一条切线,求k的值;

2)当时,直线与曲线无交点,求整数k的最大值.

【答案】12;(23

【解析】

1)先求函数的导数,设出切点坐标,根据切线方程建立等量关系,求出切点坐标,从而可得k的值;

2)把交点问题转化为函数的零点问题,结合导数,求解单调性及最值,然后可得整数k的最大值.

1)由题意知,设切点为

在点P处的切线方程为

整理得

上单调递增;当上单调递减.

所以的最大值为,即,故

2)令

①当时,,所以上单调递增.

所以,即上无零点.

②当时,由,得

时,,所以上单调递减;

时,,所以上单调递增.

的最小值为

,则

所以上单调递减,

,因此k的最大值为3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:当时,对任意恒成立;

(2)求函数的极值;

(3)时,若存在,满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过F的直线交抛物线C两点.

(Ⅰ)当时,求的值;

(Ⅱ)过点A作抛物线准线的垂线,垂足为E,过点BEF的垂线,交抛物线于另一点D,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王于2015年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2019年底,他没有再购买第二套房子.下图是2016年和2019年小王的家庭收入用于各项支出的比例分配图,根据以上信息,判断下列结论中正确的是(

A.小王一家2019年用于饮食的支出费用跟2016年相同

B.小王一家2019年用于其他方面的支出费用是2016年的3

C.小王一家2019年的家庭收入比2016年增加了1

D.小王一家2019年用于房贷的支出费用比2016年减少了

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的交点的极坐标;

2)设的一条直径,且不在轴上,直线两点,直线两点,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球运动被誉为世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行点球测试来决定是否录取,规则如下:

1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了点球测试,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求

2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.

i)求(直接写出结果即可);

ii)证明:数列为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆经过,且右焦点坐标为.

1)求椭圆的标准方程;

2)设AB为椭圆的左,右顶点,C为椭圆的上顶点,P为椭圆上任意一点(异于AB两点),直线AC与直线BP相交于点M,直线BC与直线AP相交于点N,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上一点,以点及椭圆的左、右焦点为顶点的三角形面积为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作斜率存在且互相垂直的直线两交点的中点,两交点的中点,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc均为正数,设函数fx)=|xb||x+c|+axR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函数fx)的最大值为1,证明:

查看答案和解析>>

同步练习册答案