精英家教网 > 高中数学 > 题目详情
已知集合M={x|x≥0},P={0,1,2},则有(  )
A、M?PB、M⊆P
C、M∩P=MD、M∩P=∅
考点:集合的包含关系判断及应用
专题:集合
分析:根据集合的包含系即可得结论
解答: 解:∵集合M={x|x≥0},P={0,1,2},
∴M?P,
故选:A
点评:本题考查集合的包含关系的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-4(x≤1)
x2-2x-1(x>1)
则函数y=f(x)-log2x的零点的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|ax-1|与g(x)=(a-1)x的图象没有交点,那么实数a的取值范围是(  )
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据图所示的程序框图,若a0=a5=1,a1=a4=5,a2=a3=10,x0=1,则输出的V值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?平面向量
a
b
,|
a
-
b
|<|
a
|+|
b
|,则?p为(  )
A、?平面向量
a
b
,|
a
-
b
|≥|
a
|+|
b
|
B、?平面向量
a
b
,|
a
-
b
|<|
a
|+|
b
|
C、?平面向量
a
b
,|
a
-
b
|>|
a
|+|
b
|
D、?平面向量
a
b
,|
a
-
b
|≥|
a
|+|
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x2-2ax+2,若?x∈[-1,1],都?θ∈R,f(x)≥2log2(sinθ+cosθ),求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域Ω={(x,y)|
y≥0
y≤
4-x2
,直线y=mx+2m和曲线y=
4-x2
有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若0≤m≤1,则P(M)的取值范围为(  )
A、(0,
π-2
]
B、(0,
π+2
]
C、[
π+2
,1]
D、[
π-2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c.且a=2
3
,b=2,A=
π
3

(1)求角B的大小;
(2)如果函数f(x)=sinx-sin(x+2B),求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案