(Àí)Éè¹ØÓÚxµÄ·½³Ìx2-mx-1=0ÓÐÁ½¸öʵ¸ù¦Á¡¢¦Â,ÇÒ¦Á£¼¦Â.¶¨Ò庯Êýf(x)=.

(1)Çó¦Áf(¦Á)+¦Âf(¦Â)µÄÖµ;

(2)ÅжÏf(x)ÔÚÇø¼ä(¦Á,¦Â)Éϵĵ¥µ÷ÐÔ,²¢¼ÓÒÔÖ¤Ã÷;

(3)Èô¦Ë¡¢¦ÌΪÕýʵÊý,Ö¤Ã÷²»µÈʽ:|f()-f()|£¼|¦Á-¦Â|.

(ÎÄ)Èçͼ,ÔÚƽÃæÖ±½Ç×ø±êϵÖÐ,ÒÑÖª¶¯µãP(x,y),PM¡ÍyÖá,´¹×ãΪM,µãNÓëµãP¹ØÓÚxÖá¶Ô³Æ,ÇÒ=4.

(1)Ç󶯵ãPµÄ¹ì¼£WµÄ·½³Ì;

(2)ÈôµãQµÄ×ø±êΪ(2,0),A¡¢BΪWÉϵÄÁ½¸ö¶¯µã,ÇÒÂú×ãQA¡ÍQB,µãQµ½Ö±ÏßABµÄ¾àÀëΪd,ÇódµÄ×î´óÖµ.

´ð°¸£º(Àí)½â£º(1)¡ß¦Á¡¢¦ÂÊÇ·½³Ìx2-mx-1=0µÄÁ½¸öʵ¸ù,

¡à¡àf(¦Á)=.

ͬÀí,f(¦Â)=.¡à¦Áf(¦Á)+¦Âf(¦Â)=2.

(2)¡ßf(x)=,¡àf¡ä(x)==.

µ±x¡Ê(¦Á,¦Â)ʱ,x2-mx-1=(x-¦Á)(x-¦Â)£¼0,

¡àf¡ä(x)£¾0.¡àf(x)ÔÚ(¦Á,¦Â)ÉÏΪÔöº¯Êý.

(3)¡ß¦Ë,¦Ì¡ÊR+,ÇÒ¦Á£¼¦Â,¡à

.¡à¦Á£¼£¼¦Â.

ÓÉ(2)¿ÉÖªf(¦Á)£¼f()£¼f(¦Â),ͬÀí,¿ÉµÃf(¦Á)£¼f()£¼f(¦Â).

¡àf(¦Á)-f(¦Â)£¼f()-f()£¼f(¦Â)-f(¦Á).

¡à|f()-f()|£¼|f(¦Á)-f(¦Â)|.

ÓÖÓÉ(1)Öªf(¦Á)=,f(¦Â)=,¦Á¦Â=-1,

¡à|f(¦Á)-f(¦Â)|=|-|=||=|¦Á-¦Â|.¡à|f()-f()|£¼|¦Á-¦Â|.

(ÎÄ)½â£º(1)ÓÉÒÑÖªM(0,y),N(x,-y).

Ôò=(x,y)¡¤(x,-2y)=x2-2y2=4,¼´=1.

(2)ÉèA(x1,y1),B(x2,y2),Èçͼ,ÓÉQA¡ÍQB¿ÉµÃ,

=(x1-2,y1)¡¤(x2-2,y2)=(x1-2)(x2-2)+y1y2=0.

¢ÙÈôÖ±ÏßAB¡ÍxÖá,Ôòx1=x2,|y1|=|y2|=,ÇÒy1¡¢y2ÒìºÅ,´Ëʱ(x1-2)(x2-2)+y1y2=(x1-2)2=0Ôòx12-8x1+12=0,

½âÖ®,µÃx1=6»òx1=2.Èôx1=2,ÔòÖ±ÏßAB¹ýQµã,²»¿ÉÄÜÓÐQA¡ÍQB.

Èôx1=6,ÔòÖ±ÏßABµÄ·½³ÌΪx=6,´ËʱQµãµ½Ö±ÏßABµÄ¾àÀëΪ4.

¢ÚÈôÖ±ÏßABбÂÊ´æÔÚ,ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m,Ôò

(2k2-1)x2+4kmx+2m2+4=0.

Ôò¼´

ÓÖx1+x2=,x1x2=.

¡ày1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2

=.

¡à=(x1-2,y1)¡¤(x2-2,y2)=(x1-2)(x2-2)+y1y2=x1x2-2(x1+x2)+4+y1y2

=

Ôòm2+8km+12k2=0,¿ÉµÃm=-6k»òm=-2k.Èôm=-2k,ÔòÖ±ÏßABµÄ·½³ÌΪy=k(x-2),´ËÖ±Ïß¹ýµãQ,ÕâÓëQA¡ÍQBì¶Ü,¹ÊÉáÈ¥.Èôm=-6k,ÔòÖ±ÏßABµÄ·½³ÌΪy=kx-6k,¼´kx-y-6k=0.

´ËʱÈôk=0,ÔòÖ±ÏßABµÄ·½³ÌΪy=0,ÏÔÈ»ÓëQA¡ÍQBì¶Ü,¹Êk¡Ù0.

¡àd=.

Óɢ٢ڿɵÃ,dmax=4.

˵Ã÷:ÆäËûÕýÈ·½â·¨°´ÏàÓ¦²½Öè¸ø·Ö.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

15¡¢£¨Àí£©É趨ÒåÓòΪRµÄº¯Êýf£¨x£©=|x2-2x-3|£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0ÓÐÇÒÖ»ÓÐ5¸ö²»Í¬µÄʵÊý¸ùx1£¬x2£¬x3£¬x4£¬x5£¬Ôòx1+x2+x3+x4+x5=
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒ¶ÔÓÚÈÎÒâµÄx¡ÊR£¬f£¨1+x£©=f£¨1-x£©ºã³ÉÁ¢£®µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=2x£®Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=axÓÐ5¸ö²»Í¬µÄ½â£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
a=
2
5
»ò-
2
3
£¼a£¼-
2
7
a=
2
5
»ò-
2
3
£¼a£¼-
2
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨08Äêӥ̶ÊжþÄ£Àí£©£¨14£©Éè¹ØÓÚxµÄ·½³ÌÓÐÁ½¸öʵ¸ù¡¢£¬ÇÒ.¶¨Ò庯Êý

£¨¢ñ£©ÇóµÄÖµ£»£¨¢ò£©ÅжÏÔÚÇø¼äÉϵĵ¥µ÷ÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£»

£¨¢ó£©ÈôΪÕýʵÊý£¬Ö¤Ã÷²»µÈʽ£º

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨04Ä긣½¨¾íÀí£©£¨14·Ö£©

ÒÑÖªf(x)=(x¡ÊR)ÔÚÇø¼ä[-1£¬1]ÉÏÊÇÔöº¯Êý¡£

£¨¢ñ£©ÇóʵÊýaµÄÖµ×é³ÉµÄ¼¯ºÏA£»

£¨¢ò£©Éè¹ØÓÚxµÄ·½³Ìf(x)=µÄÁ½¸ö·ÇÁãʵ¸ùΪx1¡¢x2.ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ²»µÈʽm2+tm+1¡Ý|x1-x2|¶ÔÈÎÒâa¡ÊA¼°t¡Ê[-1£¬1]ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇómµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ¡£

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸