精英家教网 > 高中数学 > 题目详情

【题目】若数列{an}满足an+1=an+( n , a1=1,则an=

【答案】2﹣ (n∈N*
【解析】解:由已知可得,an+1﹣an=( n , 所以有:a2﹣a1=( 1 , a3﹣a2=( 2 , …,an﹣an1=( n1(n≥2), 上述n﹣1个式子累加可得:an﹣a1=( 1+( 2+…+( n1= = (n≥2),
所以得,an=a1+ =2﹣ (n≥2),
因为当n=1时上式也成立,因此有an=2﹣ (n∈N*
答:2﹣ (n∈N*
【考点精析】掌握数列的通项公式是解答本题的根本,需要知道如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数则满足的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即,其中abc分别为内角ABC的对边.,则面积S的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2x+y-5=0x-2y=0的交点P

1)若直线l平行于直线l14x-y+1=0,求l的方程;

2)若直线l垂直于直线l14x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点是直线上的动点,定点 的中点,动点满足.

(1)求点的轨迹的方程

(2)过点的直线交轨迹两点,上任意一点,直线两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设xR,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[-3.5]=-4,[2.1]=2,已知函数,则关于函数gx)=[fx)]的叙述正确的是(  )

A. 是偶函数B. 是奇函数

C. 的值域是0,D. 的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点的交点,点在线段上,且.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业2017年的纯利润为500万元,因设备老化等原因,企业的生产能力逐年下降,若不能进行技术改造,预测从2018年起每年比上一年纯利润减少20万元,2018年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第年(以2018年为第一年)的利润为万元(为正整数).

(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

(2)依上述预测,从2018年起该企业至少经过多少年,进行技术改造后的累计利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)把直线轴的交点记为,求的值.

查看答案和解析>>

同步练习册答案