如图,在等腰直角三角形中, =900 ,="6," 分别是,上的点, 为的中点.将沿折起,得到如图所示的四棱椎,其中
(1)证明:;
(2)求二面角的平面角的余弦值.
(1)详见解析 (2)
解析试题分析:(1)F为ED的中点,连接OF,A’F,根据已知计算出的长度,满足勾股定理,, A’F为等腰△A’DE底边的中线,, ,证得线面垂直,线线垂直,再线面垂直;(2)过点O作的延长线于,连接.利用(1)可知:平面,根据三垂线定理得,所以为二面角的平面角.在直角中,求出即可;
试题解析:
证明: (1)设F为ED的中点,连接OF,A’F,计算得A’F=2,OF=1
∵A’F为等腰△A’DE底边的中线,∴A’F⊥DE
∵OF在原等腰△ABC底边BC的高线上,
∴OF⊥DE
又∵A’F,OF平面A’OF, A’FOF=F,
∴DE⊥平面A’OF
∵A’O平面A’OF, ∴DE⊥A’O
在△A’FO中,A’+=3+1=,∴A’O⊥OF
∵OFDE=F,OF平面BCDE,DE平面BCDE, ∴A’O⊥平面BCDE 6分
(2):如答图1,过O作CD的垂线交CD的延长线于M,连接A’M
∵A’O⊥平面BCDE,CD平面BCDE, ∴CD⊥A’O ∵OMA’O="O," ∴CD⊥平面A’OM
∵A’M平面A’OM∴CD⊥A’M ∴∠A’MO为所求二面角的平面角
在Rt△OMC中,OM==, A’O=于是在Rt△A’OM中,A’M=∴∠A’OM= 13分
考点:1.线面垂直的判定;2.二面角的定义.
科目:高中数学 来源: 题型:解答题
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.
⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面;
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.
(1)求证:⊥平面;
(2)求二面角的余弦值;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C中点.求证:
(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com