精英家教网 > 高中数学 > 题目详情
4.设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f($\frac{1}{2}$)=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为(0,$\sqrt{e}$).

分析 构造函数F(x)=$\frac{f(x)}{{e}^{2x}}$,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F($\frac{1}{2}$),运用单调性,可得lnx<$\frac{1}{2}$,运用对数不等式的解法,即可得到所求解集.

解答 解:可构造函数F(x)=$\frac{f(x)}{{e}^{2x}}$,
F′(x)=$\frac{f′(x)•{e}^{2x}-2f(x)•{e}^{2x}}{({e}^{2x})^{2}}$=$\frac{f′(x)-2f(x)}{{e}^{2x}}$,
由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.
不等式f(lnx)<x2即为$\frac{f(lnx)}{{x}^{2}}$<1,(x>0),即$\frac{f(lnx)}{{e}^{2lnx}}$<1,x>0.
即有F($\frac{1}{2}$)=$\frac{f(\frac{1}{2})}{e}$=1,即为F(lnx)<F($\frac{1}{2}$),
由F(x)在R上递增,可得lnx<$\frac{1}{2}$,解得0<x<$\sqrt{e}$.
故答案为:(0,$\sqrt{e}$).

点评 本题考查导数的运用:求单调性,考查构造法的运用,以及单调性的运用,对数不等式的解法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A、B、C的对边分别是a、b、c,$cosA=\frac{2}{3},sin(A+C)=\sqrt{5}cosC$
(1)求sinC的值
(2)若$a=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,已知三点A(4,0)、$B(4,\frac{3π}{2})$、$C(ρ,\frac{π}{6})$.
(1)若A、B、C三点共线,求ρ的值;
(2)求过OAB三点的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.底面边长为2,高为3的正三棱锥的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知圆(x-m-1)2+(y-2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为(-$\frac{12}{5}$,-$\frac{2}{5}$)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.实轴长为2,虚轴长为4的双曲线的标准方程是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${y^2}-\frac{x^2}{4}=1$
C.$\frac{x^2}{4}-\frac{y^2}{16}=1$,或$\frac{y^2}{4}-\frac{x^2}{16}=1$D.${x^2}-\frac{y^2}{4}=1$,或${y^2}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x2=2y的焦点到其准线的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=2AE,CF=2BF.如果对于常数λ,在正方形ABCD的四条边上,有且只有6个不同的点P使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范围是(  )
A.(0,7)B.(4,7)C.(0,4)D.(-5,16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校4000学生全部参加了“抗战知识普及大赛”,现随机抽取40名学生的成绩(均为整数)整理后画出的频率分布直方图如图所示,其中第六、二、三、四小组的人数依次构成等差数列,请视察图形,回答下列问题:
(1)分别求第二、三小组的频率;
(2)估计全校成绩在60分以上(包括60分)的学生共有多少人?
(3)样本中,从成绩在80分以上(包括80分)的学生中任选2人.
①写出这个试验的所有基本事件;
②求至少有1人成绩在90~100分数段的概率.

查看答案和解析>>

同步练习册答案