(本题12分) 对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。(1)判断函数是否为闭函数?并说明理由;
(2)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
科目:高中数学 来源:2013届云南省高二下学期期中文科数学试卷(解析版) 题型:解答题
(本题12分)已知函数,其中.
(Ⅰ)若曲线在点处的切线方程为,求函数的解析式;
(Ⅱ)讨论函数的单调性;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:陕西省2009-2010学年度第二学期期末考试高二数学(文科)试题 题型:解答题
(本题12分)已知关于的不等式,其中.
(Ⅰ)当变化时,试求不等式的解集 ;
(Ⅱ)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题12分)设是实数,。
(1)若函数为奇函数,求的值;
(2)试证明:对于任意,在R上为单调函数;
(3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com