精英家教网 > 高中数学 > 题目详情
设M是圆x2+y2-2x-2y+1=0上的点,则M到直线3x+4y-22=0的最长距离是
4
4
,最短距离是
2
2
分析:求出圆的圆心坐标与半径,然后求出圆心到直线3x+4y-22=0的距离,圆上的点到直线3x+4y-22=0距离的最小值与最大值就是求出的距离加减半径即可.
解答:解:∵圆x2+y2-2x-2y+1=0的圆心(1,1),半径为1,
圆心(1、1)到直线3x+4y-22=0的距离d=
|3+4-22|
5
=3,
∴圆x2+y2-2x-2y+1=0上的点到直线3x+4y-22=0距离的最小值是3-r=3-1=2,
最大值为:3+r=3+1=4.
故答案为:4;2.
点评:本题主要考查了直线与圆的位置关系的应用,解题的关键是把所求的距离转化为求圆心到直线的距离,要注意本题中满足圆上的点到直线的距离的最大值,最小值的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是圆x2+y2-6x-8y=0上动点,O是原点,N是射线OM上点,若|OM|•|ON|=120,求N点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|OM|•|ON|=150,求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州高级中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

设M是圆x2+y2-6x-8y=0上动点,O是原点,N是射线OM上点,若|OM|•|ON|=120,求N点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:《第3章 直线与方程》、《第4章 圆与方程》2007年单元测试卷(重庆十一中)(解析版) 题型:解答题

设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|OM|•|ON|=150,求点N的轨迹方程.

查看答案和解析>>

同步练习册答案