精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
在平面直角坐标系中,已知三点,曲线C上任意—点满足:
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.

(l)  (2)  (3)

解析试题分析:(1)由题意可得,
所以

所以,即
(2)因为过原点的直线与椭圆相交的两点关于坐标原点对称,
所以可设
因为在椭圆上,所以有
, ………① 
, ………②
①-②得
.
,, 
所以
的值与点的位置无关,与直线也无关. 
(3)由于在椭圆上运动,椭圆方程为,故,且
.  因为,所以

由题意,点的坐标为时,取得最小值,即当时,取得最
小值,而,故有,解得
又椭圆轴交于两点的坐标为,而点在线段上,       即,亦即,所以实数的取值范围是
考点:求动点的轨迹方程及椭圆与直线相交的性质
点评:求轨迹方程的大体步骤:1建立直角坐标系,设出动点坐标,2找到关于动点的关系式,3关系式坐标化,整理化简,4除去不满足题意要求的个别点。本题第二三小题较复杂,学生很难达到满分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,
,.

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上, 点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于32平方米,则的长应在什么范围内?
(2)当的长度为多少时,矩形花坛的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足

(1) 求实数ab间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

同步练习册答案