精英家教网 > 高中数学 > 题目详情
若m,n∈N*,则“a>b”是“am+n+bm+n>anbm+ambn”的(  )
分析:通过举反例可得,由“a>b”不能推出“am+n+bm+n>anbm+ambn”成立,由“am+n+bm+n>anbm+ambn”成立,不能推出“a>b”,从而得出结论.
解答:解:由“a>b”不能推出“am+n+bm+n>anbm+ambn”成立,如a=-1、b=-2、m=1、n=2 时,故充分性不成立.
由“am+n+bm+n>anbm+ambn”成立,不能推出“a>b”,如a=0、b=2、m=1、n=2 时,故必要性不成立.
故“a>b”是“am+n+bm+n>anbm+ambn”的既不充分也不必要条件,
故选D.
点评:本题主要考查充分条件、必要条件、充要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、设m,n是空间两条不同直线,α,β是空间两个不同平面,则下列命题的正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

5、若m、n为两条不同的直线,α、β为两个不同的平面,则以下命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

m,n是两条不同的直线,α、β是两个不同的平面,给出以下命题:
①若m?α,n∥α,则m∥n;
②若m?α,n?β,α⊥β,α∩β=l,m⊥l,则m⊥n;
③若m⊥α,m⊥n,则n∥α;
④若m⊥α,m⊥β,则α∥β;
⑤若α⊥β,m⊥α,n∥β,则m∥n,
其中正确命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )

查看答案和解析>>

同步练习册答案