精英家教网 > 高中数学 > 题目详情

【题目】某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.

1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式

2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

【答案】I.

II)当每件商品的售价为7元时,该连锁分店一年的利润最大,最大值为万元;

每件商品的售价为元时,该连锁分店一年的利润最大,最大值为万元.

【解析】

试题(1)该连锁分店一年的利润L(万元)与售价x的函数关系式为

L(x)= (x4a)(10x)2x∈[8,9]

2=(10x)(18+2a3x)

,得x =6+ax=10(舍去).∵1≤a≤3≤6+a≤8.

所以L(x)x∈[8,9]上单调递减,故=L(8)=(84a)(108)2=164a

M(a) =164a.

答:当每件商品的售价为8元时,该连锁分店一年的利润L最大,

最大值为164a万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是

A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟

B. 第二种生产方式比第一种生产方式的效率更高

C. 这40名工人完成任务所需时间的中位数为80

D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是椭圆上一点,MN分别是两圆(x+4)2y2=1(x-4)2y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形 的边长为3, 分别是边上的点,满足 (如图1).将折起到的位置,使平面平面,连接(如图2).

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.数列满足.

1)若,且,求正整数的值;

2)若数列均是等差数列,求的取值范围;

3)若数列是等比数列,公比为,且,是否存在正整数,使成等差数列,若存在,求出一个的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且在上单调递减,则的解集为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作圆的两条切线,切点分别为,直线恰好经过椭圆C的右顶点和上顶点.

1)求椭圆C方程;

2)过椭圆C左焦点F的直线l交椭圆C两点,椭圆上存在一点P,使得四边形为平行四边形,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乳业公司生产甲、乙两种产品,需要ABC三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如下表所示:

产品

苜蓿草饲料

A

B

C

4

8

3

5

5

10

现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,已知生产1个单位甲产品,产生的利润为2万元;生产1个单位乙产品,产生的利润为3万元,分别用xy表示生产甲、乙两种产品的数量.

1)用xy列出满足生产条件的数学关系式,并画出相应的平面区域;

2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.

查看答案和解析>>

同步练习册答案