精英家教网 > 高中数学 > 题目详情

【题目】已知点O是锐角△ABC的外心,a,b,c分别为内角A、B、C的对边,A= ,且,则λ的值为(  )

A. B. C. D.

【答案】D

【解析】

由题意画出图形,设的外接圆半径为,根据三角形外心的性质可得:,由向量的线性运算和向量数量积的运算,求出,在已知的等式两边同时与进行数量积运算,代入后由正弦定理化简,由两角和的正弦公式和三角形内角和定理求出λ的值.

如图所示:O是锐角△ABC的外心,

DE分别是ABAC的中点,且ODABOEAC

设△ABC外接圆半径为R,则R

由图得,

同理可得,

得,

所以

在△ABC中由正弦定理得:

代入得,

由正弦定理得,

代入得,2RsinCcosB+2RcosCsinB=﹣λR

所以2sin(C+B)=﹣λ,即2sinλ

解得λ故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若方程仅有一个解,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,已知AB=2,AC=3,BC=

(1)求角A的大小;

(2)求cos(B﹣C)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是各项为正数的数列,且.对任意的正整数n,都有成等差数列,成等比数列.

(1)求数列的通项公式;

(2)若存在p>0,使得集合M=恰有一个元素,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,函数定义于并取值于.(用数字作答)

1)若对于任意的成立,则这样的函数_______个;

2)若至少存在一个,使,则这样的函数____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,且Sn=2an﹣2(nN*),数列{bn}满足bn=(2n﹣1)an,数列{bn}的前n项和Tn(nN*),

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和Tn

(3)求 的最小值以及取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,图象过点.

1)求的值和的单调增区间;

2)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若函数在区间上有且只有两个不同零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案