精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,若直线l的参数方程为 (t为参数,α为l的倾斜角),曲线E的极坐标方程为ρ=4sinθ.射线θ=β,θ=β+ ,θ=β﹣ 与曲线E分别交于不同于极点的三点A、B、C.
(1)求证:|OB|+|OC|= |OA|;
(2)当β= 时,直线l过B、C两点,求y0与α的值.

【答案】
(1)证明:由题意可知丨OA丨=4sinβ,丨OB丨=4sin(β+ ),丨OC丨=4sin(β﹣ ),

则丨OB丨+丨OC丨=4sin(β+ )+4sin(β﹣ )=4 sinβ= 丨OA丨,


(2)解:当β= 时,B点的极坐标为(4sin( + ),( + )),

C的极坐标为(4sin( ),( + )),

转化成直角坐标B(﹣ ,1),C( ,3),

则直线l的方程为x﹣ y+2 =0,

则y0=2,α=


【解析】(1)由题意可知求得丨OA丨,丨OB丨及丨OC丨,即可证明|OB|+|OC|= |OA|;(2)当β= 时,求得B和C点坐标,求得直线l的方程,即可求得y0与α的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数,是函数的导函数, 是自然对数的底数.

(1)当时,求导函数的最小值;

(2)若不等式对任意恒成立,求实数的最大值;

(3)若函数存在极大值与极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在不为零的常数,使得函数对定义域内的任一均有,则称函数为周期函数,其中常数就是函数的一个周期

(Ⅰ)证明:若存在不为零的常数使得函数对定义域内的任一均有,则此函数是周期函数

(Ⅱ)若定义在上的奇函数满足,试探究此函数在区间内的零点的最少个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系上一动点到点的距离是点到点的距离的2倍。

(1)求点的轨迹方程;

(2)若点与点关于点对称,求,两点间距离的最大值。

(3)若过点的直线与点的轨迹相交于两点,,则是否存在直线,使 取得最大值,若存在,求出此时的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:

中学编号

1

2

3

4

5

6

7

8

原料采购加工标准评分x

100

95

93

83

82

75

70

66

卫生标准评分y

87

84

83

82

81

79

77

75

(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)

(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.

参考公式:

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;

(2)估计居民月均用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意x∈(0,π),不等式ex﹣ex>asinx恒成立,则实数a的取值范围是(
A.[﹣2,2]
B.(﹣∞,e]
C.(﹣∞,2]
D.(﹣∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:

使用智能手机

不使用智能手机

合计

学习成绩优秀

学习成绩不优秀

合计

(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?

(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣|2﹣x|,且f(x+2)>0的解集为(﹣1,1).
(1)求m的值;
(2)若正实数a,b,c,满足a+2b+3c=m.求 的最小值.

查看答案和解析>>

同步练习册答案