精英家教网 > 高中数学 > 题目详情

【题目】记[x]表示不超过x的最大整数,如[1.2]=1,[0.5]=0,则方程[x]﹣x=lnx的实数根的个数为(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:设y=[x]﹣x﹣lnx,则x>0.①当x∈(0,1),y=[x]﹣x﹣lnx=﹣x﹣lnx,

∵x∈(0,1)时, <0,

∴y=[x]﹣x﹣lnx=﹣x﹣lnx在(0,1)上是减函数,

=+∞,

当x=1时,y=0,

∴方程[x]﹣x=lnx在(0,1]内有1 个实数根.②当x∈(1,+∞)时,[x]﹣x≤0,lnx>0,

∴[x]﹣x﹣lnx恒小于0,

∴方程[x]﹣x=lnx在(1,+∞)内无实数根.

综上,方程[x]﹣x=lnx的实数根的个数为1个.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)= ,若m(A,B)=1,则正实数a的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣2a|+a2﹣4a(a∈R). (Ⅰ)当a=﹣1时,求f(x)在[﹣3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3个不相等的实根x1 , x2 , x3 , 求 + + 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)g(x)<0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为 ,通过对被抽取学生的问卷调查,得到如下2x2列联表:

支持

反对

总计

男生

30

女生

25

总计

(Ⅰ)完成列联表,并判断能否有99.9%的把握认为态度与性别有关?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式及临界表:K2=

P(K2≥k0

0.10

0.050

0.010

0.005

0.001

k0

2.706%

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠DAB=θ(0<θ< ),L为等腰梯形ABCD的周长.
(1)求周长L与θ的函数解析式;
(2)试问周长L是否存在最大值?若存在,请求出最大值,并指出此时θ的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3 . 已知底面造价为160元/m2 , 侧面造价为100元/m2 . (I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;
(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题
(1)解不等式:3≤x2﹣2x<8;
(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R且t≠0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.
(1)求证:△AOB的面积为定值.
(2)设直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

同步练习册答案