【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)若直线l:y=kx与曲线C1、曲线C2在第一象限交于P、Q,且|OQ|=|PQ|,点M的直角坐标为(1,0),求△PMQ的面积.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当 时,求函数图象在点处的切线方程;
(2)当时,讨论函数的单调性;
(3)是否存在实数,对任意,且有恒成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.
(1)若直线l与曲线C1交于M、N两点,求线段MN的长度;
(2)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)设数列{an}的前n项和为Sn,bn,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)设数列{an}的前n项和为Sn,bn,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,,过点作平面的垂线,垂足为与的交点,是线段的中点.
(1)求证:DE//平面;
(2)若四棱锥的体积为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数列,规定为数列的一阶差分数列,其中,规定为的二阶差分数列,其中.
(1)数列的通项公式,试判断,是否为等差数列,请说明理由?
(2)数列是公比为的正项等比数列,且,对于任意的,都存在,使得,求所有可能的取值构成的集合;
(3)各项均为正数的数列的前项和为,且,对满足,的任意正整数、、,都有,且不等式恒成立,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com