精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为

1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;

2)若直线lykx与曲线C1、曲线C2在第一象限交于PQ,且|OQ||PQ|,点M的直角坐标为(10),求△PMQ的面积.

【答案】1ρ4cosθ2

【解析】

1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.

2)利用极径的应用和三角函数关系式的恒等变换的应用及面积公式的应用求出结果.

1)曲线C1的参数方程为θ为参数),转换为直角坐标方程为x2+y24x0,转换为极坐标方程为ρ4cosθ

曲线C2的极坐标方程为.转换为直角坐标方程为

2)直线lykx转换为极坐标方程为θθ0,代入,解得

代入ρ4cosθ,得到ρP4cosθ0

由于|OQ||PQ|,所以ρP2ρQ

故:,解得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当 时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性;

(3)是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求实数的取值范围;

2)求证:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.

1)若直线l与曲线C1交于MN两点,求线段MN的长度;

2)若直线lx轴,y轴分别交于AB两点,点P在曲线C2上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log3ax+b)的图象经过点A21)和B52),anan+bnN*).

1)求{an}

2)设数列{an}的前n项和为Snbn,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log3ax+b)的图象经过点A21)和B52),anan+bnN*).

1)求{an}

2)设数列{an}的前n项和为Snbn,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,过点作平面的垂线,垂足为的交点是线段的中点.

1)求证:DE//平面

2)若四棱锥的体积为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数列,规定为数列的一阶差分数列,其中,规定的二阶差分数列,其中.

1)数列的通项公式,试判断是否为等差数列,请说明理由?

2)数列是公比为的正项等比数列,且,对于任意的,都存在,使得,求所有可能的取值构成的集合;

3)各项均为正数的数列的前项和为,且,对满足的任意正整数,都有,且不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的零点是.

1)设曲线在零点处的切线斜率分别为,判断的单调性;

2)设的极值点,求证:.

查看答案和解析>>

同步练习册答案