精英家教网 > 高中数学 > 题目详情
9.已知a,b∈R,且ex≥a(x-1)+b对x∈R恒成立,则ab的最大值是(  )
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

分析 先求出函数的导数,再分别讨论a=0,a<0,a>0的情况,从而得出ab的最大值.

解答 解:令f(x)=ex-a(x-1)-b,则f′(x)=ex-a,
若a=0,则f(x)=ex-b≥-b≥0,得b≤0,此时ab=0;
若a<0,则f′(x)>0,函数单调增,x→-∞,此时f(x)→-∞,不可能恒有f(x)≥0.
若a>0,由f′(x)=ex-a=0,得极小值点x=lna,
由f(lna)=a-alna+a-b≥0,得b≤a(2-lna),
ab≤a2(2-lna).
令g(a)=a2(2-lna).
则g′(a)=2a(2-lna)-a=a(3-2lna)=0,得极大值点a=${e}^{\frac{3}{2}}$.
而g(${e}^{\frac{3}{2}}$)=$\frac{1}{2}{e}^{3}$.
∴ab的最大值是$\frac{1}{2}{e}^{3}$.
故选:A.

点评 本题考查函数恒成立问题,考查了函数的单调性,训练了导数在求最值中的应用,渗透了分类讨论思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.下列命题:
①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要条件
③若p∧q为假命题,则p,q均为假命题
④对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0,
说法错误的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列$\{{a_n}\}(n∈{N^*})$的前12项,其中横坐标为奇数项,纵坐标为偶数项,按如此规律下去,则a2017+a2018+a2019等于(  )
A.1002B.1004C.1007D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比为q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an与bn
(2)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求cos2x-sin2x的值;
(2)设函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=$\sqrt{3},b=2,sinB=\frac{{\sqrt{6}}}{3}$,求$f(x)+4cos(2A+\frac{π}{6})(x∈[0,\frac{π}{4}])$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=-2,a2=3且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,则数列{an}的前n项和Sn=$\frac{13+(6n-13)•{3}^{n}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-1)}}$,则f(x+1)的定义域为(  )
A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.闭区间上的连续函数一定存在最大值与最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{1}{2}$ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{6}$D.0

查看答案和解析>>

同步练习册答案