精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2sinxcos(数学公式-x)-2数学公式sin(π+x)cosx
(1)求y=f(x)的最小正周期,并说明由函数y=sinx的图象经过怎样的平移伸缩变换可得到函数y=f(x)的图象?
(2)若0≤x≤数学公式,求函数y=f(x)的值域.

解:(1)∵cos(-x)=sinx,sin(π+x)=-sinx,
∴f(x)=2sin2x+2sinxcosx=1-cos2x+sin2x=2sin(2x-)+1,…(2分)
因此,f(x)的最小正周期T==π,…(3分)
该函数f(x)图象是由y=sinx的图象先右移个单位,然后纵坐标不变横坐标变为原来的
然后横坐标不变纵坐标变为原来的2倍,最后上平移移1个单位而得.…(6分)
(2)∵0≤x≤,∴-≤2x-
∴-≤sin(2x-)≤1,可得0≤2sin(2x-)+1≤3…(9分)
∴函数y=f(x)的值域是[0,3]…(12分)
分析:(1)由二倍角的余弦公式和辅助角公式,化简得2sin(2x-)+1,再结合正弦函数周期公式可得周期T=π,再由三角函数图象变换的公式,可得函数f(x)图象由y=sinx的图象经过平移和伸缩变换的过程;
(2)根据题意,得到-≤2x-,再结合正弦函数图象在区间[-]上的单调性,即可得到f(x)在区间[0,]上的最大值与最小值.
点评:本题给出三角函数式,求函数的单调区间和周期,并求在闭区间上的值域,着重考查了三角恒等变换和三角函数的图象与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案