精英家教网 > 高中数学 > 题目详情

已知函数

(I)当时,求曲线在点处的切线方程;

(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.

 

【答案】

(I);(II).

【解析】

试题分析:(I)先把带入函数解析式,再对函数求导,然后求在已知点的切线的斜率和已知点的坐标,再由点斜式求切线方程;(II)法1:先求函数的导函数,得导函数为0时的根值,讨论根值在区间的内外情况,判断原函数在区间的单调性,从而让原函数在区间上的最小值小于0,解得的取值范围.法2:把利用分离变量法分离,构造新的函数,利用导数求新函数在区间上的最小值,让小于最小值就是的取值范围.

试题解析:(I)当时,,           2分

曲线在点 处的切线斜率

所以曲线在点处的切线方程为.      6分

(II)解1:    7分

,即时,上为增函数,

,所以,这与矛盾   9分

,即时,

;若

所以时,取最小值,因此有,即

解得,这与矛盾;                              12分

时,上为减函数,所以

,所以,解得,这符合

综上所述,的取值范围为.                               15分

解2:有已知得:,                          8分

,                    10分

,所以上是减函数.         12分

,故的取值范围为                     15分

考点:1、利用导函数求切线方程;2、导函数的性质;3、分离变量法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

   (I)当a=1时,求在区间[1,e]的最大值和最小值;

   (II)若在区间上,函数的图象总在直线的下方,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2003-2004学年北京市丰台区高一(下)期末数学试卷(解析版) 题型:解答题

已知函数
(I)当180°<x<360°时,化简函数f(x)的表达式;
(II)写出函数f(x)的一条对称轴.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市西城区高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数
(I)当a=2时,求曲线y=f(x)在点(2,f(2))处切线的斜率;
(II)当a>0时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市学军中学高一(上)期末数学试卷(解析版) 题型:解答题

已知 函数
(I)当a=1时,求f(x)最小值;
(II)求f(x)的最小值g(a);
(III)若关于a的函数g(a)在定义域[2,10]上满足g(-2a+9)<g(a+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2006年重庆市高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(I)当a=1时,求函数f (x)的单调递增区间;
(Ⅱ)当a<0且x∈[0,π]时,函数f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

同步练习册答案