【题目】如图,某几何体中,四边形是边长为的正方形, 是直角梯形, 是直角, , 是以为直角顶点的等腰直角三角形, .
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】试题分析: 因为, ,可证平面,从而证明平面平面; 由得到,又因为四边形为正方形,所以又,以为原点, , , 所在直线分别为轴, 轴, 轴,建立空间直角坐标系,求出平面与平面的法向量,将求二面角问题转化为求两向量夹角。
解析:(1)因为, , , 平面,
所以平面,
又平面,
所以平面平面.
(2)因为平面平面,平面平面,
, 平面,
所以平面.又平面,故.
而四边形为正方形,所以又,
以为原点, , , 所在直线分别为轴, 轴, 轴,建立空间直角坐标系.
依题意易知: , , , , ,
设平面的一个法向量为,
则,即,令,则,所以.
设平面的一个法向量为,
则,即,令,则,所以.
设平面与平面所成的锐二面角的平面角为,
则.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求出曲线、的参数方程;
(Ⅱ)若、分别是曲线、上的动点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.
(1)求关于的函数关系式;
(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P–ABCD中,底面ABCD是边长为6的正方形,PD平面ABCD,PD=8.
(1) 求PB与平面ABCD所成角的大小;
(2) 求异面直线PB与DC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①;②这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.
在中,角的对边分别为,已知 ,.
(1)求;
(2)如图,为边上一点,,求的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,长半轴长为短轴长的b倍,A,B分别为椭圆C的上、下顶点,点.
求椭圆C的方程;
若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一款击鼓小游戏的规则如下:每轮游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每轮游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓是否出现音乐相互独立.
(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?
(2)设每轮游戏获得的分数为X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com