精英家教网 > 高中数学 > 题目详情

【题目】四面体ABCD的每个顶点都在球O的表面上,AB是球O的一条直径,AC=2,BC=4,现有下面四个结论:

①球O的表面积为20π;AC上存在一点M,使得ADBM;

③若AD=3,BD=4;④四面体ABCD体积的最大值为.

其中所有正确结论的编号是( )

A.①②B.②④C.①④D.①③④

【答案】C

【解析】

AC=2,BC=4可求得直径为AB=2,从而可判断①③;由AD与平面ABC相交可判断②;由D到平面ABC的距离的最大值为球的半径可判断④.

因为AB是球O的一条直径,所以ACBC,ADBD,所以AB=2.

AD=3,则BD=,③错;

球的半径为,O的表面积为×()2=20π ,①对;

因为AD与平面ABC相交,所以AC上找不到一点M,使得ADBM.②错;

因为D到平面ABC的距离的最大值为球的半径,所以四面体ABCD体积的最大值为

××2×4×=.④对,

即所有正确结论的编号是①④.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届冬奥会将于年在中国北京和张家口举行,为宣传冬奥会,让更多的人了解、喜爱冰雪项目,某大学举办了冬奥会知识竞赛,并从中随机抽取了名学生的成绩,绘制成如图所示的频率分布直方图.

(Ⅰ)试根据频率分布直方图估计这名学生的平均成绩(同一组数据用该组区间的中点值代替);

(Ⅱ)若采用分层抽样的方法从这两个分数段中抽取人,求从这两个分数段中应分别抽取多少人?

(Ⅲ)从(Ⅱ)中抽取的人中随机抽取人到某社区开展冬奥会宜传活动,求抽取的人成绩均在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在多面体中,且平面平面.

(1)设点为线段的中点,试证明平面

(2)若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.

参考数据(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函数模型求关于的回归方程;

(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;

(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.

参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是边长为3的正方形,平面,且.

(1)求几何体的体积;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知侧面,点在棱上.

)求证:平面

)试确定点的位置,使得二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的三视图正视图、侧视图、俯视图如图所示,MN分别是的中点.

1)求证:平面

2)求证:平面

3)若这个多面体的六个顶点ABC都在同一个球面上,求这个球的体积.

查看答案和解析>>

同步练习册答案
关 闭