精英家教网 > 高中数学 > 题目详情
从5名男生和4名女生中选出4人,若男生中的甲与女生中的乙至少要有1人在内,共有不同的选法种数是(  )
A、35B、45C、91D、126
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:利用间接法,求出男生中的甲和女生中的乙不在内的情况,即可得出结论.
解答: 解:利用间接法,男生中的甲和女生中的乙不在内的情况,共有
C
4
7
种方法,
∴可得男生中的甲和女生中的乙至少有1人在内,有
C
4
9
-
C
4
7
=91种方法,
故选:C.
点评:本题考查组合知识,考查间接法的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是集合{2t+m|0≤m<t,且m,t∈N}中所有的数从小到大排列成的数列,即2,4,5,8,9,10,…将数列各项按照从上到下,从左到右的原则写成如图所示的三角形数表.

(Ⅰ)在答题卡上写出这个三角形数表的第四行的各数
(Ⅱ)求a50的值
(Ⅲ)设第i行的各数之和为bi(i=1,2,3…),(例如:b1=2,b2=4+5,b3=8+9+10,…),求Tn=b1+b2+b3+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ为实数,(
b
a
)⊥
c
,则λ的值为(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在定义域内的一个区间[a,b](a<b)上函数值的取值范围恰好是[
a
2
b
2
],则称区间[a,b]是函数f(x)的有关减半压缩区间,若函数f(x)=
x-1
+m存在一个减半压缩区间[a,b](b>a≥1),则实数m的取值范围是(  )
A、(0,
1
2
B、(0,
1
2
]
C、(
1
2
,1]
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,且3a+2b+c=0,求
c
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AD⊥CD,AC⊥BC,AB=4,AD=CD=2,M为线段AB的中点,平面ACD⊥平面ABC.
(1)求证:BC⊥平面ACD;
(2)求二面角D-CM-A的正切值;
(3)求异面直线AC与BD成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
6
)+cos(x-
π
3
),g(x)=2cos2
x
2

(1)若θ是第一象限角,且f(θ)=
3
3
5
.求g(θ)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为(  )
A、10B、15C、20D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx+cosx,x∈R.
(Ⅰ)求函数f(x)的最小正周期、最大值和最小值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案