精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a<0,则必存在实数x0,使f[f(x0)]>x0
③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;
④函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论个数有(  )
分析:由函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.进而逐一由此判断题设中的四个命题的真假即可得到答案.
解答:解:因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
故①正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0,使f[f(x0)]>x0
故②错误;
若a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
故③正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.
故④正确;
故选C.
点评:本题考查的知识点是命题的真假判断与应用,其中根据已知得到f(x)>x(a>0)或f(x)<x(a<0)恒成立是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)的反函数记为y=g(x),g(16)=2,则f(
12
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-2+2010(a>0且a≠1)恒过一定点,此定点坐标为
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案