精英家教网 > 高中数学 > 题目详情
12.设复数z满足(-1+3i)z=2(1+i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘除运算化简求得z的坐标得答案.

解答 解:由(-1+3i)z=2(1+i),得$z=\frac{2+2i}{-1+3i}=\frac{(2+2i)(-1-3i)}{(-1+3i)(-1-3i)}$=$\frac{4-10i}{10}=\frac{2}{5}-i$,
∴复数z在复平面内对应的点的坐标为($\frac{2}{5},-1$),位于第四象限.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,已知四棱锥S-ABCD的底面为矩形且SA⊥底面ABCD,若侧棱SC=5$\sqrt{2}$,则此四棱锥的外接球表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD为矩形,平面CDD1C1⊥平面ABCD,E,F分别是CD,AB的中点,求证:
(1)AD⊥CD;
(2)EF∥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某高校有正教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本,已知从讲师中抽取人数为16人,那么n=72.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=2xtanx在点x=$\frac{π}{4}$处的切线方程是(2+π)x-y-$\frac{{π}^{2}}{4}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函数y=f(x)-$\frac{t}{3}$x(t>0)至少有9个零点,则t的取值范围为(  )
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知p:幂函数y=(m2-m-1)xm在(0,+∞)上单调递增;q:|m-2|<1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)和虚轴端点E的直线交双曲线右支于点P,若E为线段EP的中点,则该双曲线的离心率为(  )
A.$\sqrt{5}+1$B.$\sqrt{5}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)当a=1时,求(∁RB)∪A;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案