精英家教网 > 高中数学 > 题目详情

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

【答案】B

【解析】

理解黄金分割比例的含义,应用比例式列方程求解.

设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则,得.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为4207+515+105+26=17822,接近175cm.故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校开展“爱我家乡”演讲比赛,9位评委给小明同学打分的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为,复核员在复核时,发现有一个数字在茎叶图中的却无法看清,若记分员计算无误,则数字_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为该数列的前项和.

(1)写出数列的通项公式;

(2)计算,猜想的表达式,并用数学归纳法证明;

(3)求数列的前项和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题其中正确的有(

A.“实数都大于0”的否定是“实数都小于或等于0

B.“三角形外角和为360度”是含有全称量词的真命题

C.“至少存在一个实数,使得”是含有存在量词的真命题

D.“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:

包裹重量(单位:

包裹件数

公司对近天,每天揽件数量统计如下表:

包裹件数范围

包裹件数

(近似处理)

天数

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来天内恰有天揽件数在之间的概率;

(2)(i)估计该公司对每件包裹收取的快递费的平均值;

(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为为常数,,且),点轴下方)是曲线的两个不同交点.

(1)求曲线的普通方程和的直角坐标方程;

(2)求的最大值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且对定义域上的任意,当时,,则(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点

1)求函数的解析式;

2)若关于x的方程,有解,求实数a的取值范围;

3)若对任意的,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案