【题目】已知函数的定义域为,若存在常数,使得对任意的成立,则称函数是“类周期函数”.
(1)判断函数,是否是“类周期函数”,并证明你的结论;
(2)求证:若函数是“类周期函数”,且是偶函数,则是周期函数;
(3)求证:当时,函数一定是“类周期函数”.
【答案】(1)函数不是“类周期函数”, 是“类周期函数”,证明见解析(2)证明见解析(3)证明见解析
【解析】
(1)利用反证法可证断函数不是“类周期函数”,当时,利用定义可证是“类周期函数”;
(2)根据,,,可推出,结论得证;
(3)由,即,也就是存在非零实根,可证得结论正确.
(1)函数不是“类周期函数”, 是“类周期函数”,
证明:假设函数是“类周期函数”,
则,即对任意的成立,
令得,所以,这与相矛盾,故假设不成立,
所以函数不是“类周期函数”;
因为时, ,根据定义可知是“类周期函数”.
(2)因为函数是“类周期函数”,
所以存在常数,使得对任意的成立,
所以,
又为偶函数,所以,
所以 ,
因为,所以,
又为偶函数,所以,
所以,
所以,
因为,所以是周期为的周期函数.
(3)当时,假设函数是“类周期函数”,
则存在常数,使得对任意的成立,
即存在常数,使得对任意的成立,
所以,此方程有非零实数解,
故当时,函数一定是“类周期函数”.
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估计,恰好第三次就停止的概率为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别是、,离心率,过点的直线交椭圆于、两点, 的周长为16.
(1)求椭圆的方程;
(2)已知为原点,圆: ()与椭圆交于、两点,点为椭圆上一动点,若直线、与轴分别交于、两点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某企业的两座建筑物AB,CD的高度分别为20m和40m,其底部BD之间距离为20m.为响应创建文明城市号召,进行亮化改造,现欲在建筑物AB的顶部A处安装一投影设备,投影到建筑物CD上形成投影幕墙,既达到亮化目的又可以进行广告宣传.已知投影设备的投影张角∠EAF为,投影幕墙的高度EF越小,投影的图像越清晰.设投影光线的上边沿AE与水平线AG所成角为α,幕墙的高度EF为y(m).
(1)求y关于α的函数关系式,并求出定义域;
(2)当投影的图像最清晰时,求幕墙EF的高度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足时按计算)需再收5元.公司从承揽过的包裹中,随机抽取100件,其重量统计如下:
包裹重量(单位:) | |||||
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司又随机抽取了60天的揽件数,得到频数分布表如下:
揽件数 | |||||
天数 | 6 | 6 | 30 | 12 | 6 |
以记录的60天的揽件数的频率作为各揽件数发生的概率
(1)计算该公司3天中恰有2天揽件数在的概率;
(2)估计该公司对每件包裹收取的快递费的平均值;
(3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员3人,每人每天揽件不超过150件,每人每天工资100元,公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?
(注:同一组中的揽件数以这组数据所在区间中点值作代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为米的圆锥筒(如图2).若所裁剪的扇形铁皮的圆心角为.
(1)求圆锥筒的容积;
(2)在(1)中的圆锥内有一个底面圆半径为的内接圆柱(如图3),求内接圆柱侧面积最大时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求在点P(1,)处的切线方程;
(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;
(3)若存在两个正实数,满足,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点分别为是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线分别交椭圆于两点.
(1)求点坐标;
(2)求证:直线的斜率为定值;
(3)求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com