精英家教网 > 高中数学 > 题目详情

(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(Ⅰ) 求a、b的值,并写出切线l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.

(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)

解析试题分析:(I) 利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.
(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.
解:(I) f'(x)=3x2+4ax+b,g'(x)=2x﹣3.
由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
故有f(2)=g(2)=0,f'(2)=g'(2)=1.
由此得,解得
所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.
(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.
依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2
故x1,x2是x2﹣3x+2﹣m=0的两相异实根.
所以△=9﹣4(2﹣m)>0,解得m>﹣
又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,
特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.
由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2
对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.
则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.
所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.
于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,
综上得:实数m的取值范围是(﹣,0).
点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义在上的三个函数,且处取得极值.
(1)求a的值及函数的单调区间.
(2)求证:当时,恒有成立.[来源

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.
(1)分别判断函数是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,把边长为10的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).
(1)求出体积V与高h的函数关系式并指出其定义域;
(2)问当为多少时,体积V最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a是常数,a∈R)
(1)当a=1时求不等式的解集.
(2)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的值;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.

查看答案和解析>>

同步练习册答案