精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A﹣PD﹣B的大小.

【答案】解:(Ⅰ)取BC中点F,连接AF,则CF=AD,且CF∥AD,
∴四边形ADCF是平行四边形,∴AF∥CD,
∴∠PAF(或其补角)为异面直线PA与CD所成的角
∵PB⊥平面ABCD,∴PB⊥BA,PB⊥BF.
∵PB=AB=BF=1,∴AB⊥BC,∴PA=PF=AF=
∴△PAF是正三角形,∠PAF=60°
即异面直线PA与CD所成的角等于60°.
(Ⅱ)在Rt△PBD中,PB=1,BD= ,∴PD=
∵DE=2PE,∴PE=
,∴△PBE∽△PDB,∴BE⊥PD、
由(Ⅰ)知,CF=BF=DF,∴∠CDB=90°.
∴CD⊥BD、又PB⊥平面PBD,∴PB⊥CD、
∵PB∩BD=B,∴CD⊥平面PBD,∴CD⊥BE
∵CD∩PD=D,∴BE⊥平面PCD、
(Ⅲ)连接AF,交BD于点O,则AO⊥BD、
∵PB⊥平面ABCD,∴平面PBD⊥平面ABD,∴AO⊥平面PBD、
过点O作OH⊥PD于点H,连接AH,则AH⊥PD、
∴∠AHO为二面角A﹣PD﹣B的平面角.
在Rt△ABD中,AO=
在Rt△PAD中,AH=
在Rt△AOH中,sin∠AHO=
∴∠AHO=60°.
即二面角A﹣PD﹣B的大小为60°.

【解析】(1)由于直线PA与CD不在同一平面内,要把两条异面直线移到同一平面内,做AF∥CD,异面直线PA与CD所成的角与AF与PA所成的角相等.(2)由三角形中等比例关系可得BE⊥PD,由于CD=BD=得 ,BC=2,可知三角形BCD为直角三角形,即CD⊥DB.同时利用勾股定理也可得CD⊥PD,即可得CD⊥平面PDB.即CD⊥BE,即可得证.(3)连接AF,交BD于点O,则AO⊥BD.过点O作OH⊥PD于点H,连接AH,则AH⊥PD,则∠AHO为二面角A﹣PD﹣B的平面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求数列{bn}的通项公式;
(2)求数列{bn3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在(1,1)上的奇函数,且f( )=
(1)求实数m,n的值
(2)用定义证明f(x)在(1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处的切线与轴平行.

(1)讨论上的单调性;

(2)设 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos = ,bccosA=3. (Ⅰ)求△ABC的面积;
(Ⅱ)若 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P﹣ABFED,且AP=
(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g(x)是h(x)=ex的反函数.
(1)求函数g(f(x))的单调区间;
(2)求证:函数y=f(x)h(x)﹣ (x>0)恰有一个零点x0 , 且g(x0)<x02h(x0)﹣1 (参考数据:e=2.71828…,ln2≈0.693).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD所在平面与正三角形PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.

查看答案和解析>>

同步练习册答案