精英家教网 > 高中数学 > 题目详情
若函数f(x)、g(x)的定义域和值域都是R,则f(x)>g(x)成立的充要条件是(  )
分析:A说的不是充要条件,B中有无穷多个x(x∈R),使得f(x)>g(x)成立,故B不是不等式f(x)<g(x)有解的充要条件;C中,?x∈R,f(x)>g(x)成立,但不是充要条件;D中说的是逆否命题成立,得到结论.
解答:解:A说的必要条件,不是充要条件,
B中有无穷多个x(x∈R),使得f(x)>g(x)成立,说的是f(x)>g(x)成立的必要条件,
故B不是不等式f(x)>g(x)的充要条件;
C中,能得出?x∈R,f(x)>g(x)成立,但当?x∈R,f(x)>g(x)成立时,不能得到?x∈R,f(x)>g(x)成立,故不是充要条件;
D中说的是逆否命题成立,
故D为不等式f(x)>g(x)有解的充要条件;
故选D.
点评:本题考查的是条件的判断,本题解题的关键是对全称命题和特称命题真假的判断要注意,在全称命题为真时,要求所有的元素都要满足性质,但特称命题为真时,我们只要举出一个符合条件的元素值即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(Ⅱ)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1a
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)与g(x)=2-x互为反函数,则f(x2)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)已知函数f(x)=-x2+2lnx.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若函数f(x)与g(x)=x+
a
x
有相同极值点,
(i)求实数a的值;
(ii)若对于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(2)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)分别为R上的奇函数、偶函数,且满足f(x)-g(x)=πx,请将f(3),f(4),g(0)按从大到小的顺序排列
 

查看答案和解析>>

同步练习册答案