精英家教网 > 高中数学 > 题目详情

已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是 ________.

2
分析:设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.
解答:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=-1的距离d2=a2+1;
P到直线l1:4x-3y+6=0的距离d1=
则d1+d2=+a2+1=
当a=时,P到直线l1和直线l2的距离之和的最小值为2
故答案为2
点评:此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A、2
B、3
C、
11
5
D、
37
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A、2
B、3
C、
11
5
D、
37
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求有圆心在l1上且与直线l2相切于点P的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:4x-3y+8=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A、
12
5
B、3
C、2
D、
37
16

查看答案和解析>>

同步练习册答案