精英家教网 > 高中数学 > 题目详情

【题目】过双曲线C1a0b0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为(

A.y=±xB.y=±xC.y=±2xD.y=±x

【答案】A

【解析】

先由题意画出图形,不妨设一条渐近线方程为,求得直线F2Py,与已知渐近线方程联立求得点P的坐标,再由向量等式求得A的坐标,代入双曲线方程整理即可求得双曲线C的渐近线方程.

如图,不妨设双曲线的一条渐近线方程为

F2P所在直线的斜率为,直线F2P的方程为:y

联立,解得P),

Ax0y0),由,得()=3x0cy0),

所以

解得: ,即A),

代入1,得

整理得:

解得:,所以

∴双曲线C的渐近线方程为y

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,EF分别为边的中点.现将沿着折叠到的位置,使得平面平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直角梯形中,,四边形为矩形,,平面平面.

1)求证:平面

2)在线段上是否存在点P,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,

曲线为参数),为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

1)求的极坐标方程;

2)若相交于点相交于点,当为何值时,最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为.

.

①求数列的通项公式;

②若,求正整数的值;

,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为

1)写出曲线C1C2的直角坐标方程;

2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:

1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20204月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对AB两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?

参考数据:.

参考公式:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线的参数方程和圆的标准方程;

(2)设直线与圆交于两点,若,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线上一点作直线交抛物线E于另一点N.

1)若直线MN的斜率为1,求线段的长.

2)不过点M的动直线l交抛物线EAB两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.

查看答案和解析>>

同步练习册答案