精英家教网 > 高中数学 > 题目详情
函数y=
1
3+2sinx+cosx
的最大值是(  )
A、
3
3
-1
B、
5
3
+1
C、
3-
5
4
D、
3+
5
4
考点:三角函数的最值
专题:三角函数的图像与性质
分析:利用辅助角公式化简函数的解析式为y=
1
3+
5
sin(x+α)
,从而根据正弦函数的值域求得函数y的最大值.
解答: 解:函数y=
1
3+2sinx+cosx
=
1
3+
5
sin(x+α)
,其中,cosα=
2
5
,sinα=
1
5
,故函数y的最大值为
1
3-
5
=
3+
5
4

故选:D.
点评:本题主要考查辅助角公式,正弦函数的值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,直线x+
3
y-3=0的倾斜角(  )
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)满足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤
π
2
).
(1)求f(x)的表达式;
(2)求当x取何值时,f(x)取最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2sinx+1
+lg(2cosx-1)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=-
1
2
,则
1+2sinαcosα
sin2α-cos2α
的值是(  )
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω>0,函数f(x)=sin(ωx+
π
4
)
[-
π
4
π
6
]
上单调递增.则ω的取值范围是(  )
A、(0,3]
B、(0,
3
2
]
C、(0,1]
D、[-
3
2
,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=-2,求
sin(2π-α)•cos(π-α)-sin2(π+α)
cos(π+α)•cos(
π
2
-α)+sin2(
π
2
+α)
的值;
(2)已知sinα+cosα=
1
5
,-
π
2
<α<
π
2
,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为正数,且满足a2+b2=c2,则log2(1+
b+c
a
)+log2(1+
a-c
b
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2015
2015
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2015
2015
,设函数h(x)=f(x+3)•g(x-4),若函数h(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为
 

查看答案和解析>>

同步练习册答案