分析 (Ⅰ)利用弦切角定理、角平分线的性质证明∠AEF=∠AFE,由BC为⊙O的直径,结合圆周角定理的推论,可得∠AFE的度数;
(Ⅱ)证明△ACD∽△BAD,根据三角形相似的性质可得$\frac{AD}{BD}$=$\frac{AC}{AB}$,又由AB=AD,可得AD:BD=tanB,求出B角大小后,即可得到答案.
解答 解:(Ⅰ)因为AC为⊙O的切线,所以∠B=∠DAC
因为DE是∠ADB的平分线,所以∠ADE=∠EDB
所以∠B+∠EDB=∠DAC+∠ADE,即∠AEF=∠AFE,
又因为BC为⊙O的直径,所以∠BAC=90°.所以∠AEF=$\frac{1}{2}$(180°-90°)=45°;
(Ⅱ)因为∠B=∠DAC,所以∠ADB=∠CDA,所以△ACD∽△BAD,
所以$\frac{AD}{BD}$=$\frac{AC}{AB}$,
又因为AB=AD,所以∠B=∠ADB=30°,
Rt△BAC中,$\frac{AD}{BD}$=$\frac{AC}{AB}$=tan30°=$\frac{\sqrt{3}}{3}$.
点评 本题考查的知识点是弦切角,三角形相似的性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com