精英家教网 > 高中数学 > 题目详情
3.如图,已知D点在⊙O直径BC的延长线上,DA切⊙O于A点,DE是∠ADB的平分线,交AC于F点,交AB于E点.
(Ⅰ)求∠AEF的度数;
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

分析 (Ⅰ)利用弦切角定理、角平分线的性质证明∠AEF=∠AFE,由BC为⊙O的直径,结合圆周角定理的推论,可得∠AFE的度数;
(Ⅱ)证明△ACD∽△BAD,根据三角形相似的性质可得$\frac{AD}{BD}$=$\frac{AC}{AB}$,又由AB=AD,可得AD:BD=tanB,求出B角大小后,即可得到答案.

解答 解:(Ⅰ)因为AC为⊙O的切线,所以∠B=∠DAC
因为DE是∠ADB的平分线,所以∠ADE=∠EDB
所以∠B+∠EDB=∠DAC+∠ADE,即∠AEF=∠AFE,
又因为BC为⊙O的直径,所以∠BAC=90°.所以∠AEF=$\frac{1}{2}$(180°-90°)=45°;
(Ⅱ)因为∠B=∠DAC,所以∠ADB=∠CDA,所以△ACD∽△BAD,
所以$\frac{AD}{BD}$=$\frac{AC}{AB}$,
又因为AB=AD,所以∠B=∠ADB=30°,
Rt△BAC中,$\frac{AD}{BD}$=$\frac{AC}{AB}$=tan30°=$\frac{\sqrt{3}}{3}$.

点评 本题考查的知识点是弦切角,三角形相似的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC-ccos(A+C)=3acosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=3,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面内的向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1).
(1)若($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k的值;
(2)若向量$\overrightarrow{d}$满足$\overrightarrow{d}$∥$\overrightarrow{c}$,且|$\overrightarrow{d}$|=$\sqrt{34}$,求向量$\overrightarrow{d}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1-BCDE.(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等腰梯形ABCD中,AD∥BC,$AD=\frac{1}{2}BC=2$,∠ABC=60°,M是BC的中点,将梯形ABCD绕AB旋转90°,得到梯形ABC1D1(如图)
(1)求证:BC1⊥AC;
(2)求二面角D1-AM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,以AB为直径的圆O与以N为圆心,半径为1的圆一个交点为Q,延长AB至点P,过点P作两圆的切线,分别切于M,N两点,已知AB=4.
(1)证明:AN=PN;
(2)求QN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的奇函数y=f(x)的图象关于直线x=1对称,当-1≤x<0时,f(x)=-log${\;}_{\frac{1}{2}}$(-x),则方程f(x)-$\frac{1}{2}$=0在(0,6)内的零点之和为(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四边形ABCD是边长为1的正方形,平面ADE⊥平面ABCD,DE⊥AD,BF∥DE,DE=BF=1,M为BC的中点.
(I)求异面直线AE与MF所成的角的余弦值;
(Ⅱ)在线段AF上是否存在一点N,使平面DMN与平面ABCD所成的角的余弦值为$\frac{3\sqrt{14}}{14}$?若存在,请确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{cosx}{2-sinx}$的值域是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

同步练习册答案