精英家教网 > 高中数学 > 题目详情
8.已知$sin(a+\frac{π}{6})-cosa=\frac{1}{3},则cos(2a-\frac{π}{3})$=(  )
A.-$\frac{5}{18}$B.$\frac{5}{18}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

分析 由条件利用两角和的正弦公式求得sin(a-$\frac{π}{6}$)=$\frac{1}{3}$,再利用二倍角的余弦公式求得cos(2a-$\frac{π}{3}$)的值.

解答 解:∵sin(a+$\frac{π}{6}$)-cosa=sina•$\frac{\sqrt{3}}{2}$+cosa•$\frac{1}{2}$-cosa=sin(a-$\frac{π}{6}$)=$\frac{1}{3}$,
故cos(2a-$\frac{π}{3}$)=1-2${sin}^{2}(a-\frac{π}{6})$=1-2×$\frac{1}{9}$=$\frac{7}{9}$,
故选:D.

点评 本题主要考查两角和的正弦公式,二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C的对边分别是a、b、c,且(a+b)(sin A-sin B)=(c-b)sin C.
(1)求角A的大小;
(2)若2c=3b,且△ABC的面积为6$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),有以下结论:
①求f(2012)=0;
②函数f(x)的图象关于直线x=2对称;
③若f(x)在[-2,0]上单调递增,则f(x)在[-2,2]上单调递增;
④若f(x)满足在区间[0,2]上是增函数的条件,且f(2)=1,则在x∈R上有f(x)∈[-1,1].
其中正确的结论是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C的对边分别为a,b,c且b2+c2+bc-a2=0,则角A=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三个数成等差数列,它们的和等于18,它们的平方和等于116,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}为等差数列,且a1+a3+a5=105,a2+a4+a6=99,当a1+a2+…+an取最大值时,则n的值为(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lnx+2x-3在区间(1,2)上的零点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=9x-2a•3x+4.
(I)令t=3x,求t在区间[-1,2]上的值域;
(2)若a=1,求函数f(x)的值域;
(3)若a>0,求f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,且S4=16,a4=7.
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$$<\frac{1}{2}$.

查看答案和解析>>

同步练习册答案