精英家教网 > 高中数学 > 题目详情
函数f(x)=x 
1
3
-
1
2x
的零点所在的区间是(  )
A、(0,
1
4
B、(
1
4
1
3
C、(
1
3
1
2
D、(
1
2
,1)
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:函数f(x)=x 
1
3
-
1
2x
的零点化为方程的根,再化简得x=(
1
8
)x
,再令g(x)=x-(
1
8
)x
,从而求零点所在的区间.
解答: 解:若f(x)=x 
1
3
-
1
2x
=0,
则x 
1
3
=
1
2x
,得x=(
1
8
)x

令g(x)=x-(
1
8
)x

可得g(
1
3
)=
1
3
-
1
2
<0,g(
1
2
)=
1
2
-
2
4
>0,
因此f(x)零点所在的区间是(
1
3
1
2
).
故选C.
点评:本题考查了函数的零点与方程的根的关系应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设(i,j)表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;
(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)•cos(x+
π
3
)-sin(2x+3π).
(I)求 f(x)的最小正周期及单调递增区间;
(Ⅱ)若将f(x)的图象向左平移
π
4
个单位,得到函数g(x)的图象,求函数g(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3=ax2-4x+3(x∈R).
(1)当a=2时求f(x)在点(1,f(1))处的切线方程
(2)若函数f(x)在区间(1,2)上为减函数,求实数a的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(
a+b
2
)<0,那么下一步要计算的函数值为(  )
A、f(
3a+b
4
B、f(
a+3b
4
C、f(
a+b
4
D、f(
3a+3b
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x∈R,都有f(x)=1-f(1-x),则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|x-a|是偶函数,g(x)=2x+
b
2x
是奇函数,那么a+b的值为(  )
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(0,+∞)内为增函数的是(  )
A、y=
10
x
B、y=(
1
10
x
C、y=log 
1
10
x
D、y=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:

在10000张有奖明信片中,设有一等奖5个,二等奖10个,三等奖100个,从中随意买1张.
(1)P(一等奖)=
 
P(二等奖)=
 
P(三等奖)=
 

(2)P(中奖)=
 
,P(不中奖)=
 

查看答案和解析>>

同步练习册答案