【题目】在平面直角坐标系xOy中,点P到两点(0,),(0,),的距离之和等于4,设点P的轨迹为C.
(1)求C的方程.
(2)设直线与C交于A,B两点,求弦长|AB|,并判断OA与OB是否垂直,若垂直,请说明理由.
【答案】(1)x21;(2)见解析
【解析】
(1)由题意可知P点的轨迹为椭圆,并且得到c,a=2,求出b后可得椭圆的标准方程;
(2)设A(x1,1)B(x2,1),联立方程,得17x2+4x﹣12=0,x1+x2,x1x2,进而求解即可.
(1)由条件知:P点的轨迹为焦点在y轴上的椭圆,其中c,a=2,∴b2=a2﹣c2=1,
故轨迹C的方程为:x21.
(2)设A(x1,1)B(x2,1),联立方程,得17x2+4x﹣12=0,x1+x2,x1x2,
则|AB|
(x1,1),(x2,1),x1x2+(1)(1)x1x2(x1+x2)+1()()+1=0,
即⊥,所以OA与OB垂直.
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ,圆: 的圆心在椭圆上,点到椭圆的右焦点的距离为.
(1)求椭圆的标准方程;
(2)过点作互相垂直的两条直线,且交椭圆于两点,直线交圆于, 两点,且为的中点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是( )
A.乙同学比甲同学发挥的稳定,且平均成绩也比甲同学高
B.乙同学比甲同学发挥的稳定,但平均成绩不如甲同学高
C.甲同学比乙同学发挥的稳定,且平均成绩也比乙同学高
D.甲同学比乙同学发挥的稳定,但平均成绩不如乙同学高
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,为直线上的动点,过作的两条切线,切点分别为.
(1)证明:直线过定点:
(2)若以为圆心的圆与直线相切,且切点为线段的中点,求该圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:x2+y2﹣4x﹣6y+12=0相交于M、N两点
(1)求实数k的取值范围;
(2)求证:为定值;
(3)若O为坐标原点,问是否存在直线l,使得,若存在,求直线l的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,
其中根据茎叶图能得到的统计结论的编号为( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com