精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点P到两点(0),(0),的距离之和等于4,设点P的轨迹为C

1)求C的方程.

2)设直线C交于AB两点,求弦长|AB|,并判断OAOB是否垂直,若垂直,请说明理由.

【答案】(1)x21;(2)见解析

【解析】

1)由题意可知P点的轨迹为椭圆,并且得到ca2,求出b后可得椭圆的标准方程;

2)设Ax11Bx21,联立方程,得17x2+4x120x1+x2x1x2,进而求解即可.

1)由条件知:P点的轨迹为焦点在y轴上的椭圆,其中ca2,∴b2a2c21

故轨迹C的方程为:x21

2)设Ax11Bx21),联立方程,得17x2+4x120x1+x2x1x2

则|AB|

x11),x21),x1x2+1)(1x1x2x1+x2+1+10

,所以OAOB垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是(

A.乙同学比甲同学发挥的稳定,且平均成绩也比甲同学高

B.乙同学比甲同学发挥的稳定,但平均成绩不如甲同学高

C.甲同学比乙同学发挥的稳定,且平均成绩也比乙同学高

D.甲同学比乙同学发挥的稳定,但平均成绩不如乙同学高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,为直线上的动点,过的两条切线,切点分别为.

(1)证明:直线过定点:

(2)若以为圆心的圆与直线相切,且切点为线段的中点,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知时都取得极值.

)求的值;

)若,求的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A01)且斜率为k的直线l与圆Cx2+y24x6y+120相交于MN两点

1)求实数k的取值范围;

2)求证:为定值;

3)若O为坐标原点,问是否存在直线l,使得,若存在,求直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案