精英家教网 > 高中数学 > 题目详情

【题目】某厂商调查甲乙两种不同型号汽车在10个不同地区卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图,为了鼓励卖场,在同型号汽车的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号的“星级卖场”.

(Ⅰ)求在这10个卖场中,甲型号汽车的“星级卖场”的个数;

(Ⅱ)若在这10个卖场中,乙型号汽车销售量的平均数为26.7,求的概率;

(Ⅲ)若,记乙型号汽车销售量的方差为,根据茎叶图推断为何值时,达到最小值(只写出结论).

注:方差,其中,…,的平均数.

【答案】15

2

3

【解析】

(Ⅰ)根据茎叶图,代入即可求得甲型号汽车的平均值,即可求得“星级卖场”的个数;

(Ⅱ)根据乙组数据的平均值,可代入求得.由古典概型概率,列举出所有可能,即可求得符合的概率.

(Ⅲ)当,由方差公式可知,的值越小,其方差值越小,时方差取得最小值.

1)根据茎叶图得到甲组数据的平均值:

.

该厂商将销售量高于数据平均数的卖场命名为该型号的“星级卖场”,

在这10个卖场中,甲型号汽车的“星级卖场”的个数为5个.

2)记事件为“”,乙组数据的平均值:

,

,

和取值共9种,分别为:,,,,,,,,,其的有4种,

的概率.

3)由题意可知当的值越小,其方差值越小

所以时,达到最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于的正实数对,再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数m来估计的值.假如统计结果是那么可以估计______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在上单调递增的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数上的单调性;

2)若存在两个极值点,记作,若,求a的取值范围;

3)求证:当时,(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且.

)求椭圆E的方程;

)设是以原点为圆心,短轴长为半径的圆,过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为MN,若直线MNx轴、y轴上的截距分别为mn,试计算的值是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解我校高2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2000名高三学生进行了问卷调查,统计结果如下表:

愿意参加

愿意参加

重庆一中本部校区

220

980

重庆一中大学城校区

80

720

1从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;

2对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分概率满足:假设解答各题之间没有影响

①对于一道不完全会的题,求“如花姐”得分的均值

②试求“如花姐”在本次摸底考试中总得分的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,若,.

1)证明:当时,

2)求数列的通项公式;

3)设,求数列的前项和.

查看答案和解析>>

同步练习册答案