精英家教网 > 高中数学 > 题目详情
16.如图,正方形边长是2,直线x+y-3=0与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是$\frac{7}{8}$.

分析 根据几何概率的求法,可以得出镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.

解答 解:观察这个图可知:阴影部分是正方形去掉一个小三角形,
设直线与正方形的两个交点为A,B,
∴在直线AB的方程为x+y-3=0中,
令x=2得A(2,1),
令y=2得B(1,2).
∴三角形ABC的面积为s=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
则飞镖落在阴影部分的概率是:
P=1-$\frac{s}{{s}_{正方形}}$=1-$\frac{\frac{1}{2}}{4}$=1-$\frac{1}{8}$=$\frac{7}{8}$.
故答案为:$\frac{7}{8}$.

点评 本题考查几何概型的概念,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a=30.4,b=log40.3,c=log43,则(  )
A.a>c>bB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“-3≤m≤0”是“直线mx-y-2m=0与函数$f(x)=\left\{\begin{array}{l}\sqrt{-{x^2}+16},-4≤x≤0\\ 2x-2,x>0\end{array}\right.$的图象有两个交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b是两个正实数.且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^{b}}$=($\frac{1}{{2}^{a}}$)b,则ab有(  )
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2-3x-1.
(1)当a=-4时,求函数f(x)的单调递减区间;
(2)已知g(x)=-3x+1,若f(x)与g(x)的图象有三个不同交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{-{x}^{2}+2x+3}$的定义域为(  )
A.[-1,3]B.[-3,1]C.(-∞,-3]∪[1,+∞]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈R,满足4≥y≥4-x,x≤2,则$\frac{{x}^{2}+{y}^{2}+4x-2y+5}{xy-x+2y-2}$的最大值为(  )
A.2B.$\frac{13}{6}$C.$\frac{10}{3}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程C:y2=x2+$\frac{1}{{x}^{2}}$所对应的曲线是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有一批产品,其中有12件正品和4件次品,从中有放回地任取4次,若X表示取到次品的次数,则D(X)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案