已知,函数.
(1)如果时,恒成立,求m的取值范围;
(2)当时,求证:.
(1),(2)详见解析.
【解析】
试题分析:(1)转化为恒成立,求的最大值;通过导数确定函数的单调性,利用单调性求出函数的最大值,;令,通过求其导数,通过导数的正负,判定函数的单调性,从而求出其最大值;
(2)首先利用分析法将所要证不等式,逐步分析,找到证明其成立的充分条件,即,设函数,利用导数找到其最小值,证明其最小值也大于0,则不等式成立.中档偏难.
试题解析:(1),,.
令(),,递减,
,∴m的取值范围是. 5分
(2)证明:当时,的定义域,
∴,要证,只需证
又∵,∴只需证, 8分
即证
∵递增,,
∴必有,使,即,
且在上,;在上,,
∴
∴,即 12分
考点:1.函数恒成立问题;2.证明不等式的方法;3.利用导数求函数的最小值.
科目:高中数学 来源:2013-2014学年河南中原名校高三下学期第二次联考理科数学试卷(解析版) 题型:解答题
如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省邯郸市高三第一次模拟考试理科数学试卷(解析版) 题型:选择题
已知是椭圆,上除顶点外的一点,是椭圆的左焦点,若 则点到该椭圆左焦点的距离为( )
A. B. C . D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省邯郸市高三第一次模拟考试文科数学试卷(解析版) 题型:填空题
已知是定义在[-1,1]上的奇函数且,当,且时,有,若对所有、恒成立,则实数的取值范围是_________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三第一次模拟考试文科数学试卷(解析版) 题型:解答题
在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M 对应的参数= ,与曲线C2交于点D
(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求 的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com