精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD的三视图如下图所示,则四棱锥P-ABCD的四个侧面中的最大的面积是(     )

A.3            B.2       C.6            D.8

 

【答案】

C

【解析】

试题分析:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为:,所以后面三角形的面积为:,两个侧面面积为:,前面三角形的面积为:,四棱锥P-ABCD的四个侧面中面积最大的是前面三角形的面积:6.故选C.

考点:本题考查三视图与几何体的关系,几何体的侧面积的求法,考查计算能力.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,
平面PBC垂直平面ABCD,试探求直线PA与BD的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD
(2)求证:BC⊥平面PAC
(3)求二面角A-PC-D的平面角a的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求此时异面直线AE和CH所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

同步练习册答案