精英家教网 > 高中数学 > 题目详情

(05年浙江卷理)(14分)

设点(,0),和抛物线:y=x2+an x+bn(n∈N*),其中an=-2-4n-由以下方法得到: x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点在抛物线:y=x2+an x+bn上,点(,0)到的距离是 到 上点的最短距离.

   (Ⅰ)求x2及C1的方程.

   (Ⅱ)证明{}是等差数列.

解析:(Ⅰ)由题意,得A(1,0),C1:y=x2-7x+b1.

设点P(x,y)是C1上任意一点,则|A1P|=

令f(x)=(x-1)2+(x2-7x+b1)2,则由题意得,,

又P2(x2,0)在C1上,∴2=x22 -7x2+b1

解得x2=3,b1=14.故C1方程为y=x2-7x+14.

(Ⅱ)设P(x,y)是C1上任意一点,则|AnP|=

令g(x)=(x-xn)2+(x2+anx+bn)2,则,由题意得,,

=0,

又∵,∴(xn+1-xn)+2n(2xn+1+an)=0(n≥1),

即(1+2n+1)xn+1-xn+2nan=0,   (*)

下面用数学归纳法证明xn=2n-1.

①     当n=1时,x1=1,等式成立.

②     假设当n=k时,等式成立,即xk=2k-1.

则当n=k+1时,由(*)知(1+2k+1)xk+1-xk+2kak=0,   (*)

又ak=-2-4k-,∴.

即当n=k+1,时等式成立.

由①②知,等式对n∈N+成立,∴{xn}是等差数列.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年西安市第一中学五模理)(12分) 已知长度为的线段的两端点在抛物线上移动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年滨州市质检三文)(12分)已知函数.

   (I)当m>0时,求函数的单调递增区间;

   (II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案