精英家教网 > 高中数学 > 题目详情

【题目】某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'DC于点P,设ADP的面积为S2 , 折叠后重合部分ACP的面积为S1 .

Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;

Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?

Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?

【答案】(1)(2)当材料长为 ,宽为 时,S2最大.(3)当材料长为 ,宽为 时,S1+2S2最大

【解析】

试题分析:(1)设米,通过三角形全等以及勾股定,即可用表示图中的长度,并写出的取值范围;

(2)表示面积,利用基本不等式求解最大值,即可求得材料的长和宽的值;

(3)表示面积的表达式,利用导数求解函数的最值即可

试题分析:

解:(Ⅰ)由题意,AB=x,BC=2﹣x,x>2﹣x,1<x<2

DP=y,则PC=x﹣y,由ADP≌△CB'P,故PA=PC=x﹣y,

PA2=AD2+DP2,得(x﹣y)2=(2﹣x)2+y2

即: .

Ⅱ)记ADP的面积为S2,则

当且仅当 时,S2取得最大值.

故当材料长为 ,宽为 时,S2最大.

于是令

∴关于x的函数 上递增,在 上递减,

∴当 时,S1+2S2取得最大值.

故当材料长为 ,宽为 时,S1+2S2最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,F是椭圆C的右焦点.过点F且斜率为k(k≠0)的直线l与椭圆C交于A,B两点,O是坐标原点.
(1)求n的值;
(2)若线段AB的垂直平分线在y轴的截距为 ,求k的值;
(3)是否存在点P(t,0),使得PF为∠APB的平分线?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面是线段的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60


(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2= [ + +…+ ],其中 为数据x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF= , 则下列结论中错误的个数是( )

(1) AC⊥BE.
(2) 若P为AA1上的一点,则P到平面BEF的距离为.
(3) 三棱锥A-BEF的体积为定值.
(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.
(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,圆C的方程为 (θ为参数).以坐标原点O为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.

(Ⅰ)当时,判断直线的关系;

(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.

(1)求证:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线x2 =1(b>0)的左、右焦点分别为F1 , F2 , 直线l过F2且与双曲线交于A,B两点.
(1)直线l的倾斜角为 ,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b= ,若l的斜率存在,且( + =0,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆过点,离心率为,左右焦点分别为,过点的直线交椭圆于两点。

(1)求椭圆的方程;

(2)当的面积为时,求直线的方程。

查看答案和解析>>

同步练习册答案