【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.
(1)求曲线, 的直角坐标方程;
(2)设为曲线上的点, 为曲线上的点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】对于集合,定义了一种运算“”,使得集合中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素是集合对运算“”的单位元素.例如: ,运算“”为普通乘法;存在,使得对任意,都有,所以元素是集合对普通乘法的单位元素.
下面给出三个集合及相应的运算“”:
①,运算“”为普通减法;
②{表示阶矩阵, },运算“”为矩阵加法;
③(其中是任意非空集合),运算“”为求两个集合的交集.
其中对运算“”有单位元素的集合序号为( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一点.
(Ⅰ)证明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中点,求三棱锥AEBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆经过为坐标原点,线段的中点在圆上.
(1)求的方程;
(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为,其中为参数,且在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)设是曲线上的一点,直线被曲线截得的弦长为,求点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定义映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),则f(4,3,2,1)=( )
A. (1,2,3,4) B. (0,3,4,0)
C. (0,-3,4,-1) D. (-1,0,2,-2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区: | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地区: | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )
A. 使得为等腰三角形的点有且仅有4个
B. 使得为直角三角形的点有且仅有4个
C. 使得的点有且仅有4个
D. 使得的点有且仅有4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com