精英家教网 > 高中数学 > 题目详情

【题目】求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.

【答案】3x-4y-12=0.

【解析】试题分析: 方法一:由题意知:可设l的方程为3x-4y+m=0,求出l在x轴,y轴上的截距,由截距之和为1,解出m,代回求出直线方程; 方法二:设直线方程为+=1由题意得解出a,b即可.

试题解析:

方法一:由题意知:可设l的方程为3x-4y+m=0,

l在x轴,y轴上的截距分别为- .

由-+=1知,m=-12.

所以直线l的方程为:3x-4y-12=0.

方法二:设直线方程为+=1

由题意得

解得

所以直线l的方程为: +=1.

即3x-4y-12=0.

点睛:本题考查直线方程的求法,属于基础题.直线方程有五种不同的形式:斜截式,点斜式,两点式,截距式和一般式,两种不同的方法分别使用了直线方程中的一般式和截距式,求出直线的横纵截距,根据题中给出的截距和为1,求出参数的值,代入原方程求出直线方程,最后写成一般形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的极小值;

(Ⅱ)设定义在上的函数在点处的切线方程为,当时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组: 分别加以统计,得到如图所示的频率分布直方图。

(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;

(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 (e=2.71828,是自然对数的底数)在的定义域上单调递增,则称函数具有M性质,下列函数中具有M性质的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为

(1)求直线的斜率和曲线C的直角坐标方程;

(2)若直线与曲线C交于A、B 两点,设点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有五辆汽车,其中两辆汽车的车牌尾号均为1. 两辆汽车的车牌尾号均为2, 车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车, 三辆汽车每天出车的概率均为 两辆汽车每天出车的概率均为,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:

车牌尾号

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求该公司在星期一至少有2辆汽车出国的概率;

(2)设表示该公司在星期二和星期三两天出车的车辆数之和,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点, 为抛物线上不同的两点, 分别是抛物线在点、点处的切线, 的交点.

(1)当直线经过焦点时,求证:点在定直线上;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏但可见部分如图所示据此解答如下问题

(1)求高三(1)班全体女生的人数

(2)求分数在[80,90)之间的女生人数并计算频率分布直方图中[80,90)之间的矩形的高

(3)若要从分数在[80,100]之间的试卷中任取两份分析女生失分情况在抽取的试卷中求至少有一份分数在[90,100]之间的概率

查看答案和解析>>

同步练习册答案