精英家教网 > 高中数学 > 题目详情

【题目】人的卷舌与平舌(指是否能左右卷起来)同人的眼皮单双一样,也是由遗传自父母的基因决定的,其中显性基因记作D,隐性基因记作d;成对的基因中,只要出现了显性基因,就一定是卷舌的(这就是说,卷舌的充要条件是基因对是.同前面一样,决定眼皮单双的基因仍记作B(显性基因)和b(隐性基因).

有一对夫妻,两人决定舌头形态和眼皮单双的基因都是,不考虑基因突变,求他们的孩子是卷舌且单眼皮的概率.(有关生物学知识表明:控制上述两种不同性状的基因遗传时互不干扰).

【答案】.

【解析】

用树形图列出所有可能的结果,其中表示卷舌且单眼皮的是,根据古典概型的概率计算公式计算可得.

解:根据题意,这对夫妻孩子的决定舌头形态和眼皮单双的基因的所有可能情况用图表示.

不难看出,样本空间中共包含16个样本点,其中表示卷舌且单眼皮的是

因此,所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由题意可得 q1,且 an 0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,

则由题意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.

故选:A.

【点睛】

本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.

型】单选题
束】
10

【题目】若直线y=2x上存在点(xy)满足约束条件,则实数m的最大值为

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为线段的中点, ,四边形为边长为1的正方形,平面平面为棱的中点.

(1)若为线上的点,且直线平面,试确定点的位置;

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n三位递增数(如135256345等)

现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由123456组成的所有三位递增数中随机抽取1个数,且只抽取1次,若抽取的三位递增数是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.

1)由123456可组成多少三位递增数?并一一列举出来.

2)这种选取规则对甲乙两名学生公平吗?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2)

根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差具有线性相关关系。

(1)求绿豆种子出芽数 (颗)关于温差的回归方程

(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数。

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的值域;

2)设 ,求函数的最小值

3)对(2)中的,若不等式对于任意的时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过抛物线的焦点且与此抛物线交于两点,,直线与抛物线交于两点,且两点在轴的两侧.

(1)证明:为定值;

(2)求直线的斜率的取值范围;

(3)若为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解上、下班时期的交通情况,某市抽取了12辆机动车行驶的时速,得到了如下数据(单位:km/h.

上班时期:30 33 18 27 32 40 26 28 21 28 35 20

下班时期:27 19 32 29 36 29 30 22 25 16 17 30

用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.

查看答案和解析>>

同步练习册答案