精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围,并且判断代数式的大小.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)先对函数求导,求出函数的极值,根据函数在区间上存在极值,
所以 从而解得(Ⅱ)不等式恒成立问题转化为求函数的最值问题,根据不等式的性质比较的大小.
试题解析:
解:(Ⅰ)因为,则,         (1分)
时,;当时,.
所以上单调递增;在上单调递减,
所以函数处取得极大值.                  (2分)
因为函数在区间上存在极值,
所以 解得                  (4分)
(Ⅱ)不等式即为 记
所以.          (5分)
,则

上单调递增,
,从而
上也单调递增,所以
所以.                        (7分)
由上述知恒成立,即, 
,则
, ,
,                     (9分)
叠加得
.

所以.                 (12分)
考点:函数与导数,函数极值与最值,不等式恒成立问题,不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知函数f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值与最小值;
(Ⅱ)若f(x)<4-At对于任意的x∈[1,3],t∈[0,2]恒成立,求实数A的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分) 已知函数,若
(1)求曲线在点处的切线方程;
(2)若函数在区间上有两个零点,求实数b的取值范围;
(3)当

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,导函数 的最小值为
(1)求的值;
(2)求函数的单调递增区间,并求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)若上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.

查看答案和解析>>

同步练习册答案