精英家教网 > 高中数学 > 题目详情
5.如图所示,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱与底面所成角的正弦值为$\frac{\sqrt{3}}{3}$.

分析 结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.

解答 解:由三视图可知,
此多面体是一个底面边长为2的正方形,
且有一条长为2的侧棱垂直于底面的四棱锥,
所以最长棱长为:$\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}$=2$\sqrt{3}$.
这个多面体最长的一条棱与底面所成角的正弦值为:$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查了三视图视角下多面体棱长的最值问题,考查直线与平面所成角的求法.考查了同学们的识图能力以及由三视图还原物体的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.分别写出在下列位置上的角的集合.
(1)y轴负半轴;
(2)x轴;
(3)第一、三象限角平分线;
(4)第四象限角平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等比数列1,-$\frac{1}{3}$,$\frac{1}{9}$,-$\frac{1}{27}$,…的第3项到第7项的和是$\frac{61}{729}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.比较0.43,30.4,log0.34的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-2x+1<a2},B={x|-1<x<2},若A⊆B,则正实数a的取值范围为(  )
A.(1,+∞)B.(1,2]C.(0,1]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.关于函数的性质,有如下命题:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②已知f(x)是定义域内的增函数,且f(x)≠0,则$\frac{1}{f(x)}$是减函数;
③若f(x)是定义域为R的奇函数,则函数f(x-2)的图象关于点(2,0)对称;
④已知偶函数f(x)在区间[0,+∞)上单调递增,则满足$f(2x-1)<f(\frac{1}{3})$的x的取值范围是$(\frac{1}{3},\frac{2}{3})$.
其中正确的命题序号有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若${S_1}=\int_0^{\frac{π}{2}}{cosx}dx$,${S_2}=\int_1^2{\frac{1}{x}}dx$,${S_3}=\int_1^2{e^x}dx$,则S1,S2,S3的大小关系为(  )
A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x>0,y>0,且$\frac{2}{x}+\frac{8}{y}=1$,则xy的范围为[64,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)为R上的奇函数,当x>0时,f(x)=x2+2x+8,则f(x)的解析式为$f(x)=\left\{\begin{array}{l}-{x^2}+2x-8,x<0\\ 0,x=0\\{x^2}+2x+8,x>0\end{array}\right.$.

查看答案和解析>>

同步练习册答案