解析:令Ai={S中一切可被i整除的自然数},i=2,3,5,7.记A=A2∪A3∪A5∪A7,利用容斥原理,容易算出A中元素的个数是216.由于在A中任取5个数必有两个数在同一个Ai之中,从而他们不互素.于是n≥217.
另一方面,令
B1=(1和S中的一切素数}
B2=(22,32,52,72,112,132}
B3={2×131,3×89,5×53,7×37,11×23,13×19}
B4={2×127,3×83,5×47,7×31,11×19,13×17}
B5={2×113,3×79,5×43,7×29,11×17}
B6={2×109,3×73,5×41,7×23,11×13}
易知B1中元素的个数为60.令B=B1∪B2∪B3∪B4∪B5∪B6,则B中元素的个数为88,S-B中元素的个数为192.在S中任取217个数,由于217-192=25>4×6,于是存在i(1≤i≤6),使得这217个数中有5个数在Bi中.显然这5个数是两两互素的,所以n≤217.
于是n=217.科目:高中数学 来源:安徽省蚌埠三中2011-2012学年高一12月月考数学试题 题型:013
设S={1,2,3},M={1,2},N={1,3},那么(CSM)∩(CSN)等于
{1,3}
{1}
{2,3}
查看答案和解析>>
科目:高中数学 来源:随堂练1+2 讲·练·测 高中数学·必修1(苏教版) 苏教版 题型:022
设全集S={1,2,3,4,5,6,8,9},A、B是S的子集且(SA)∩B={1,9},A∩B={2},(SA)∩(SB)={4,6,8}.求A、B.
查看答案和解析>>
科目:高中数学 来源:广东省梅县华侨中学2010届高三第一次月考数学试题文科 题型:022
设A是整数集的一个非空子集,对于k∈A,如果k-1A且k+1A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8,},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com