精英家教网 > 高中数学 > 题目详情
已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA、QB分别切圆M于A,B两点.
(1)若点Q的坐标为(1,0),求切线QA、QB的方程;
(2)求四边形QAMB的面积的最小值;
(3)若|AB|=
4
2
3
,求直线MQ的方程.
分析:(1)设出切线方程,利用圆心到直线的距离等于半径,即可求切线QA、QB的方程;
(2)求出四边形QAMB的面积的表达式,利用|MQ|>|MO|求出面积的最小值;
(3)设AB与MQ交于点P,通过MP⊥AB,MB⊥BQ,求出|MP|,求出|MQ|,即可求直线MQ的方程.
解答:解:(1)设过点Q的圆M的切线方程为x=my+1,------(1分)
则圆心M到切线的距离为1,∴
|2m+1|
m2+1
=1⇒m=-
4
3
或0,------(4分)
∴切线QA、QB的方程分别为3x+4y-3=0和x=1------(5分)
(2)∵MA⊥AQ,∴SMAQB=|MA|•|QA|=
|MQ|2-|MA|2
=
|MQ|2-1
|MO|2-1
=
3
------(10分)
(3)设AB与MQ交于点P,则MP⊥AB,MB⊥BQ,|MP|=
1-(
2
2
3
)
2
=
1
3

在Rt△MBQ中,|MB|2=|MP|•|MQ|,解得|MQ|=3
设Q(x,0),则x2+22=9,x=±
5
,∴Q(±
5
,0)

∴直线MQ的方程为2x+
5
y-2
5
=0
2x-
5
y+2
5
=0
------(14分)
点评:本题考查圆的切线方程的求法,四边形面积的求法,两点间的距离公式的应用,考查转化思想与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=1,定点A(4,2)在直线x-2y=0上,点P在线段OA上,过P点作圆M的切线PT,切点为T.
(1)若MP=
5
,求直线PT的方程;
(2)经过P,M,T三点的圆的圆心是D,求线段DO长的最小值L.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(3
2
,4)
,点B(
10
,2
5
)

(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-4)2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA、PB,切点为A、B.
(Ⅰ)当P的横坐标为
165
时,求∠APB的大小;
(Ⅱ)求证:经过A、P、M三点的圆N必过定点,并求出所以定点的坐标.
(Ⅲ)求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若t=0,MP=
5
,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,
①将DO2表示成a的函数f(a),并写出定义域.
②求线段DO长的最小值.

查看答案和解析>>

同步练习册答案